
Hysse Audio/Event System
IMPORTANT DISCLAIMER: The system is dependent on the Wwise framework, so before
being able to use it correctly one must integrate Wwise into the Unity project.

This is the documentation for the HysseAESystem illustrating how to set it up and use it in a
Unity project. The system is meant for use in Wwise-integrated projects and its goal is to
empower the audio designers by giving them additional tools to hook up the Wwise
framework and its components to the custom logic of a Unity game.

Setup
To start using the system one must first integrate Wwise in the Unity project by following the
official guide.
https://www.audiokinetic.com/library/edge/?source=InstallGuide&id=integrating_wwise_into
_an_unreal_or_unity_project
Afterwards the only step left is to import the HysseAESystem Unity package by double
clicking on the corresponding package file while the Unity project is open and confirming by
clicking “Import”.

Structure of the package
The package is mostly divided in 2 folders (exception made for the two Managers, Audio and
Event, in the root folder): the Modules folder contains all of the system’s modules that can be
used for managing sound in the game; the Testing folder, on the other hand, contains mocks
of the same modules in the first folder exclusively made for testing purposes. The latter use a
separate EventManager from the one that you should use in the game, which has a list of
mock-up events used by the TestInvoker to test the modules.

https://www.audiokinetic.com/library/edge/?source=InstallGuide&id=integrating_wwise_into_an_unreal_or_unity_project
https://www.audiokinetic.com/library/edge/?source=InstallGuide&id=integrating_wwise_into_an_unreal_or_unity_project

The Testing folder
If your purpose is a testing one, or if you want to get familiar with the system’s modules, only
use the ones in the Testing folder. To do that, first create an Empty Object in the scene and
add the TestInvoker component onto it. In here you can set up how to manually fire specific
events that can then be listened to by the test modules that you slot on other GameObjects.
You’re strongly recommended not to modify the TestEventManager since it has already been
given the necessary testing events needed to test every possible module.

The Modules folder
If your purpose is to start using the actual modules from the Modules folder in your personal
game, you should pay attention to the fact that those modules use the EventManager instead
of the TestEventManager; this means that in order to make the modules do something, you
need to create the events that they should listen to in the EventManager and fire them from
somewhere in your game.

Introduction to the system
To both understand how to use the system and how the system works underneath, one must
first have a general overview of what is Wwise and why the system is useful.

What is Wwise
Wwise is a software made by AudioKinetic for interactive media and video games that
features an audio authoring tool and a cross-platform sound engine. Most importantly, on top
of letting audio designers create and perfect sounds and ambient effects, it also enables them
to hook these to in-game logic by providing a list of components that can be used in game
editors to send data to Wwise based on game events. The main element to be understood
from the Wwise framework is Wwise Events.

Wwise Events
Wwise Events are basically the building blocks of the whole audio design process; they
represent a specific audio feature that the audio designer wants to add to the game and they
can have multiple Actions for accomplishing their goals.
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=under
standing_events_understanding_events
In the game editor an event can be “Posted” (called/started) and “Stopped” (self-explanatory)
by calling the right Wwise API function that interfaces with the AudioKinetic SoundEngine.
Each Event has its own ID and there can be multiple Events relative to the same sound but
with different IDs active at the same time. The ID is returned once it has been Posted in the
game editor.

https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=understanding_events_understanding_events
https://www.audiokinetic.com/library/edge/?source=WwiseFundamentalApproach&id=understanding_events_understanding_events

The problem with Wwise
Everything about sounds exciting and flawless but unfortunately it comes with its limitations.
The biggest of them is that Wwise Components rely on a set of predefined events in order to
be notified and this means that attaching sound effects to specific custom logic (which differs
from from that predefined set) for one’s game is almost always resulting in a programmer
having to write repetitive code where that logic is run in the game. Other limitations are the
lack of a reusable module for Animation sound events, the lack of event-grouping
functionalities, the inability to extend the Wwise framework in an intuitive way, the limited
amount of custom triggers directly configurable in Wwise (You can only create up to 32
custom triggers in Wwise because they use a 32 bit mask for selecting them in the Inspector,
sorry, nerdy stuff).

The proposed solution
The HAES aims to solve most of these projects and also adds new features that are not
present in the Wwise framework at all. This does not mean that the HAES modules are a
superset of the Wwise ones as this would be totally out of scope. It is just a collection of
modules that tries to fix most of the frustrating elements of the Wwise-Unity integration by
also adding some quality of life improvements.

Structure of the HAES
This chapter is going to present the HAES by both giving a how-to-use description and an
in-depth explanation of how it works underneath so that both designers and programmers can
make good use of the documentation for usage and extension of the HAES.

The EventManager
The EventManager is one of the two cores of the HAES and it is responsible for managing all
of the game-specific events to be fired during gameplay. Since it will never be directly used
by designers, the following will mostly be a programming-oriented description.
The EventManager is a static class that can be accessed by anywhere in the code containing
the definition of all the events that will be fireable in it. The events are instances of the
UnityAction<T> class with T being the primitive type that they pass onwards when they are
fired (void is an option of course). When one wants to define a new event, one must declare
the new UnityAction instance and the static method that will be used to fire it (so that one
doesn’t need to remember the syntax); on top of that, one must add the name of the newly
created event to the correct enum (i.e.: if the event is a UnityAction<float> its name must be
added to the FloatEventType enum). This step is needed in order to be able to show the event
list in all of the HAES Modules, so that designers can Post Wwise Events based on in-game

events. The final step, closely connected to the previous one, is to add the correct switch-case
to the right switch in both the Subscribe and UnSubscribe functions (i.e.: if the event is
UnityAction<float> its case must be added to the SubscribeFloat and UnSubscribeFloat
functions).

The AudioManager
The AudioManager is the second core of the HAES and it is responsible for interfacing with
the Wwise API and being a middle point between Wwise and the custom game logic. Again,
this is a component that no designer should use or modify directly and the following
description is going to be a programming-oriented one.
The AudioManager, like the EventManager, is a static class reachable from anywhere in the
code containing methods for Posting Wwise Events, stopping already playing Events and
methods to manage the list of the currently playing Events. It is also where decorative
behaviours (such as the grouping and super-grouping or the replayability of sounds) are
implemented and made accessible from the outside. It is strongly suggested not to modify this
class unless there is an understood bug with it (and an understood solution as well!).

HAES Modules
This will now be a runthrough of all the HAES modules and how to work with them.

The RTPC Binder
An RTPC (Real-time Parameter Controls) is a Wwise functionality that lets the audio
designer bind an in-game float value to an in-Wwise sound curve or behaviour. The way it
was usually used in game projects was to have either the programmer or the audio
programmer code the function to bind a specific in-game value with the correct Wwise
element. The RTPC Binder fixes this by presenting the designer with a simple and intuitive
Inspector where the Wwise RTPC can be picked and binded with an in-game value from a list
of all the Events in the game that currently return float values.

How to use it

● Event Type: The EventManager Event to be binded with the Wwise RTPC.
● Wwise Value Min: The lower bound of Wwise’s RTPC value domain (usually 0).
● Wwise Value Max: The upper bound of Wwise’s RTPC value domain (usually 100).
● Game Value Min: The lower bound of the in-game variable’s value domain

(dependent on the variable’s nature).
● Game Value Max: The upper bound of the in-game variable’s value domain

(dependent on the variable’s nature).
● Game Sync: The Wwise RTPC value to be binded with the EventManager Event’s

value.

NOTE: The Game Value Min and Max can both be set based on the actual domain of the
variable or to gain a strategic advantage in development (i.e.: a DistanceFromPoint event that
sends the current distance between the player and a specific point could be binded with a
Wwise RTPC but how would you define when to make the RTPC value reach its max value?
the distance could be 0, 100, 1000….So in this case a decision could be made based on the
average max distance that the player reaches, etc.)

How it works
The component just interpolates the given value from the chosen float event so that it equals
Wwise Value Min when the initial event value equals Game Value Min, and it equals Wwise
Value Max when the initial event value equals Game Value Max. This value is then set as the
RTPC value through an API call to the AKSoundEngine.

The Animation Event Post Audio
Unity allows developers to fire events in specific points of an Animation Clip’s timeline. To
do this you first need to create a function to be called when the event fires and then add an
event to the timeline while also specifying the function to call (the newly created one).
https://docs.unity3d.com/Manual/script-AnimationWindowEvent.html
This process is repetitive and the HAES offers a component to help eliminate the
programming side of it.

How to use it

https://docs.unity3d.com/Manual/script-AnimationWindowEvent.html

First add an event by following the previously linked guide. In the event inspector input
“PlayEventSound” in the “Function” field and a unique id for the audio event in the “String”
field.

Then attach an AnimationEventPostAudio component on the GameObject with the Animator
for each animation event you defined (or for each of the ones you want to listen to).

● Wwise Events: The list of Wwise events to be Posted when the animation event gets
fired.

● Id: The string Id also present on the animation event to listen to.

How it works
The component has a function called PlayEventSound that uses the string argument to check
if the id set in the animation event is the same set on the AnimationEventPostAudio
component. If that’s the case the component posts the Wwise Event but without adding its ID
to the currently-playing events list in the AudioManager.

The AudioPoster Class
Most of the HAES Modules’ goal is to Post Wwise Events based on a varied set of logic
behaviours, but they usually share some functionality. This is why all of the Posting HAES
Modules inherit from the same parent class (AudioPoster) that includes shared fields and
functions.

How to use it

● Listener Name: The name of the specific instance of the HAES module. It serves as
an easy way to manage them in the inspector.

● Description: General notes that can be written by an audio designer to remind
themselves of the purpose of the specific HAES module.

● Wwise Event: The Wwise Event to post.
● Logic Behaviour: Whether or not the logic of the Component should be left

untouched or inverted. (i.e.: if a component Posts when a bool variable is “true”, when
the logic is “Inverted” it will Post when the variable is “false”).

● Play Behaviour: Whether or not to Post an Event if the same event is already playing
in the game.

● Stop Behaviour: The behaviour the component will have when stopping an Event:
○ Stop One: Stops the first instance of the selected Event in chronological order

(the first one that was played among the currently playing ones)
○ Stop All: Stops all of the instancesof the selected Event that are currently

playing in the game.
○ Stop Group: If the Group field contains a string, it will stop all of the instances

of the selected Event that are currently playing that have the same Group.
○ Stop Super Group: If the Super Group field contains a string, it will stop all of

the instances of all the Events that are currently playing that have the same
Super Group.

● Group: This field is used both by the Play Behaviour and the Stop Behaviour. If it
contains a string it adds the instance of the Posted Event to a Group with the string as
its name.

● Super Group: This field is used both by the Play Behaviour and the Stop Behaviour. If
it contains a string it adds the instance of the Posted Event to a Super Group with the
string as its name.

NOTE: From now on, all of the AudioPoster’s fields are not going to be explained again in
modules that inherit from it.

How it works
The AudioPoster basically provides a CallFunction that in turn calls the Play/Stop function
for the specified Event based on the Logic Behaviour.
The PlayFunction is essentially calling the AudioManager API variants based on whether one
wants to also attach a Group or a Super Group (or both) to an Event, or whether one wants to
replay the event if it’s already playing or not.
The StopFunction is calling different AudioManager stopping APIs based on whether one
wants to stop a single instance, all of them, the ones in a Group or the ones in a Super Group.

The Void Post Audio
The Void Post Audio is a HAES module used for posting a Wwise event whenever a specific
event with no parameters (void) is fired. It is a really straight-forward module and it is one of
the most commonly used ones.

How to use it

● Event Type: The EventManager’s void event to listen to.

NOTE: The default Logic Behaviour for the Void Post Audio is to Post the Wwise Event
when the event gets fired. The inverted Logic Behaviour for the Void Post Audio is to Stop
the Wwise Event when the event gets fired.

How it works
Come on…

The Threshold Post Audio
The Threshold Post Audio is a HAES module used for posting a Wwise event when the value
returned by the selected EventManager float event goes over a defined threshold.

How to use it

● Event Type: The EventManager’s float event to listen to.
● Domain Value Min: The lower bound of the event’s value domain.
● Domain Value Max: The upper bound of the event’s value domain.
● Threshold: The threshold to check against.

NOTE: The default Logic Behaviour for the Threshold Post Audio is to Post the Wwise
Event when the float event’s value is higher then or equal to the threshold value and Stop it
otherwise. The inverted Logic Behaviour for the Threshold Post Audio is to Play the Wwise
Event when the event’s value is lower than the threshold value and Stop it otherwise.

How it works
The component is simply checking if the value is over the threshold or not and based on the
Logic Behaviour, Post/Stop the Wwise Event.

The Bool Post Audio
The Bool Post Audio is a HAES module used for posting a Wwise event when the value
returned by the selected EventManager’s bool event is “true”.

How to use it

● Event Type: The EventManager’s bool event to listen to.

NOTE: The default Logic Behaviour for the Bool Post Audio is to Post the Wwise Event
when the bool event’s value is true and stop it otherwise. The inverted Logic Behaviour for
the Bool Post Audio is to Play the Wwise Event when the bool event’s value is false and Stop
it otherwise.

How it works
Come on…

The Int Post Audio
The Int Post Audio is a HAES module used for posting a Wwise event when the value
returned by the selected EventManager’s int event is equal to the value inserted by the user.

How to use it

● Event Type: The EventManager’s int event to listen to.
● Int Field: The int value to check the event’s value against.
● Check Field: Whether or not to care about the Int Field. If this is unchecked the

module is going to behave exactly as a Void Audio Post but with int events as callers.
(It can be useful to uncheck this in those cases when events are made to pass an int
value that is only useful for programmers and not at all connected to audio)

How it works
Are you serious?...

The Switch Audio Setter
The Switch Audio Setter is a HAES module used for setting a Wwise Switch Value whenever
the EventManager’s void event is fired.

https://www.audiokinetic.com/library/edge/?source=Help&id=working_with_switches_worki
ng_with_switches

How to use it

● Switch Value: The Wwise Switch Value to set.
● Event Type: The EventManager’s void event to listen to.

How it works
The component makes use of the AKSoundEngine API directly in order to call the SetValue
on the AK.Wwise.Switch component.

The State Audio Setter
The State Audio Setter is a HAES module used for setting a Wwise State Value whenever the
EventManager’s void event is fired.

https://www.audiokinetic.com/library/edge/?source=Help&id=states#:~:text=A%20State%20
is%20a%20Wwise,to%20changes%20in%20the%20game.

How to use it/How it works
The component is almost identical to the Switch Audio Setter but instead it uses an
AK.Wwise.State underneath, so have a look at the latter’s description to know how to use it.

Extending the system
If one wants to create and add new modules to the HAES, one could go two routes: if the new
module is going to Post a Wwise Event then it should inherit from AudioPoster and use either
the CallFunction or the PlayFunction to post the event. If the new module, on the other hand,
is going to use some other feature of the Wwise Event then the custom logic to be attached to
that feature must first be implemented in the AudioManager and then called in the new
module.

https://www.audiokinetic.com/library/edge/?source=Help&id=working_with_switches_working_with_switches
https://www.audiokinetic.com/library/edge/?source=Help&id=working_with_switches_working_with_switches
https://www.audiokinetic.com/library/edge/?source=Help&id=states#:~:text=A%20State%20is%20a%20Wwise,to%20changes%20in%20the%20game.
https://www.audiokinetic.com/library/edge/?source=Help&id=states#:~:text=A%20State%20is%20a%20Wwise,to%20changes%20in%20the%20game.

